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ABSTRACT. Marsh and Hau (1996) based the assertion that parsimony is not 
always desirable when assessing model fit on a particular counterexample drawn 
from Marsh's previous research. This counterexample is neither general nor valid 
enough to support such a thesis. More specifically, the counterexample signals an 
oversight of extant, stochastic models justifying correlated uniquenesses, namely, 
moving-average and autoregressive moving-average models. Such models provide 
theoretically plausible motives for a priori specification of error correlations. In fact, 
when uniquenesses are correlated, stochastic models other than the conventional 
simplex and quasi-simplex models must be tested before positive identification of 
the process is possible (Sivo, 1997). In short, exchanging the mechanistic penalties 
for model complexity for the mechanistic specification of untenable measurement-
error covariances offers no solution. Parsimony has not been dismissed based on 
the argument Marsh and Hau presented concerning longitudinal data.  

MARSH AND HAU (1996) POSED THE QUESTION "Is parsimony always desirable 
when assessing the fit of a model to some data set?" in order to argue subsequently 
that indeed, under some conditions, model parsimony is either too stiff a 
requirement for or irrelevant to the assessment of goodness of fit. To overturn the 
assumption that parsimony is always a critical standard in the evaluation of model 
fit, Marsh and Hau used a particular counterexample. If that counterexample is 
sufficiently general and valid, model parsimony may be judged, at least in some 
circumstances, as an inappropriate standard in the evaluation of model fit. Marsh 
and Hau were similarly careful to qualify their assertion concerning parsimony by 
acknowledging that choosing the most parsimonious model is "usually good advice." 
They were concerned, instead, about the universal and "mechanistic" application of 
the parsimony standard in all research situations, particularly as it is evaluated by 
indices designed to be sensitive to model complexity.  

Marsh and Hau's (1996) counterexample was not among the many examples 
devised to question the standard of parsimony. Instead, it arose in practice as a 
stumbling block to interpreting a particular analysis, traceable to some of Marsh's 
previously published findings (e.g., Marsh, 1993; Marsh & Grayson, 1994a, 1994b).  

Review of these articles revealed that before examining certain longitudinal data 
sets, Marsh hypothesized that measurement errors would correlate high enough to 
warrant including error covariances in the quasi-simplex model. In fact, Marsh 
(1993) and Marsh and Grayson (1994a, 1994b) correctly concluded that not 
specifying the correlated measurement errors in such cases would result in 
systematically biased estimates of the stability coefficients. Thus, specification of 



measurement error correlations in the quasi-simplex model was thought to be more 
than simply warranted--it was thought to be necessary. However, consideration of 
such model specification ushered in two issues, one practical and the other 
theoretical.  

The practical issue concerned how to go about specifying all uniqueness 
covariances. Such specification would underidentify the model. To achieve an 
identified model, Marsh and Hau had to posit a second-order equivalent to the 
single-indicator model and allow all uniquenesses to covary. The second-order 
equivalent, or so-called multiple-indicator model, treats each item as an indicator 
instead of using the total test score as a single indicator. Although not the subject of 
analysis in the present article, this solution presents a new problem. For the solution 
to be applied, every item must serve as an indicator in the quasi-simplex model, and 
so model complexity increases arithmetically as the number of items comprising a 
test increases. Furthermore, a five-item test already prone to low or "negative" 
reliability estimates because of its brevity would be turned into five different 
indicators for each occasion. If a five-item test is prone to low or irregular reliability 
estimates, the single-item reliabilities will be much lower, per Spearman-Brown.  

The theoretical issue with which Marsh needed to contend concerned the 
development of a rationale for specifying, a priori, measurement-error correlations in 
the quasi-simplex model. Marsh's (1993) approach, in this case, was to make the 
assumption that measurement-error correlations are always high enough in 
longitudinal data sets to justify their specification in quasi-simplex models. This 
conclusion motivated and required Marsh and Hau (1996) to assert that parsimony 
is not always relevant or necessary. They argued that a priori specification was 
warranted because Joreskog (1979), among other researchers, found correlated 
uniquenesses in his longitudinal data sets; thus, it follows, the principle of parsimony 
is not always desirable after all.  

In the present article, we did not intend to defend the utility or worth of the principle 
of parsimony in all cases or the parsimony correction built into several fit indices, but 
instead to criticize Marsh and Hau's (1996) "counterexample," particularly as it is 
used to defend a priori specification of measurement-error correlations regardless of 
their theoretical pertinence to a given model under study. This critique, by 
implication, challenges Marsh and Hau's argument concerning parsimony as a 
standard for evaluating models.  

Time-Series Methodology: A Tenable Alternative 

Marsh and Hau argued for the a priori consideration of correlated measurement 
errors in their second-order quasi-simplex model, independent of whatever 
substantive issue is under investigation in a particular study. In this case, the 
correlated uniquenesses are unsubstantiated except that several researchers have 
reported often finding correlated measurement errors in their longitudinal data (e.g., 
Joreskog, 1979, 1981; Joreskog & Sorbom 1977, 1989; Marsh, 1993; Rogosa, 
1979). A priori consideration of correlated measurement errors without regard to the 
theory proper to the variable relationships under study in a particular research 
situation is troublesome, given that Glass, Willson, and Gottman (1975) and Sivo 
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(1997) demonstrated that many longitudinal data sets do not evidence correlated 
uniquenesses. To better understand how correlated measurement errors may be 
substantively tenable in particular research situations, a review of the taxonomy 
offered by time series theorists may be helpful. Similarities between the longitudinal 
panel data and time-series data types have been duly noted in prior research, and 
the theory of discrete time-series accounts for how errors can correlate over time. 
Both support the need for investigating error covariance for each situation.  

Box and Jenkins (1976) proposed a method for forecasting time series values for 
data characterized as dependent or autocorrelated. Autocorrelation in a series is 
generated by probabilistic models using stochastic processes; by examining the 
features of the autocorrelation at hand, one may identify the stochastic process in 
question (Box & Jenkins). Box and Jenkins explained that stochastic processes are 
statistical phenomena developing over time congruent with probabilistic laws.  

According to Box and Jenkins (1976), time series data often may be modeled for 
two distinct stochastic processes: autoregressive (AR) and moving average (MA). 
AR models are constructed to allow the current realization of a time series to be 
expressed as a function of previous realizations of the same time series:  

Xt = Phi1Xt-1 + Phi2Xt-2 + ... + PhipXt-p + Epsilont,  

where X denotes an observed score taken on some occasion (t) deviated from the 
original level X0 of the series; Epsilon denotes an independent, identically distributed 
error associated with a given occasion (t); and Phi denotes a correlation among 
temporally ordered scores at some lag (e.g., t - 1 or a lag of 1, t-2 or a lag of 2). MA 
models are constructed to allow the current value of a time series to be expressed 
as a function of autocorrelated errors:  

Xt = Epsilont - Theta1Epsilont-1 - Theta2Epsilont-2 - ... - ThetaqEpsilont-q,  

where X denotes an observed score taken on some occasion (t) deviated from the 
original level X0 of the series; Epsilon denotes independent, identically distributed 
error associated with a given occasion (t); and Phi denotes a correlation among 
errors at some lag (e.g., t - 1 or a lag of 1, t - 2 or a lag of 2). When both processes 
are concurrently responsible for the dependency in a series, the autoregressive 
moving average (ARMA) model is defined as  

Xt = Phi1Xt-1 + Phi2Xt-2 + ... + PhipXt-p - Theta1Epsilont-1 - Theta2Epsilont-2 - ... - 
ThetaqEpsilont-q + Epsilont.  

Commenting on Marsh's models in a article concerning how to use structural 
equation modeling (SEM) to fit time series models to longitudinal data, Willson 
(1995) noted that the basic autoregressive model is but a restricted form of Marsh's 
(1993) depiction of the simplex model. In fact, many researchers have mistakenly 
referred to the simplex model as a first-order AR, suggesting the association with 
time series models (e.g., Joreskog & Sorbom, 1989; Rudinger, Andres, & Rietz, 
1991). The difference between the two models is that the simplex model allows all 
true scores and errors to be independently estimated, whereas the autoregressive 



model constrains the true scores and errors in the series in specific ways.  

Willson (1995) further indicated that Marsh (1993) did not test a model that assumes 
an MA process, wherein the errors rather than the observed scores propogate, 
although Willson suggested that the errors may instead possess an MA structure. If 
autocorrelation were anticipated to be present in both the true scores and the errors, 
an ARMA model may be fit to the data. Sivo (1997) found that although 
measurement errors are not correlated in all longitudinal data sets, when in fact 
such measurement error correlations are found they often exist only at a particular 
lag nearest to the diagonal of the error covariance matrix, suggesting that an MA or 
ARMA process exists in the data.  

Modeling Correlated Measurement Errors in Longitudinal Data 

Clearly, the practice of testing multivariate time series models accounting for 
correlated errors against longitudinal data is rare when compared with the practice 
of testing simplex or quasi-simplex models. Indeed, the predominant discussion of 
fitting simplex or quasi-simplex models to longitudinal data in the literature 
motivated Marsh (1993) to suggest the one-factor model. Perhaps the reason time 
series models specifying correlated errors have not been used much is that 
"econometricians have concentrated on the linear simultaneous equation model, in 
which there are stochastic disturbances in equations ['shocks'] but not on 
measurement errors in variables ['errors']. Meanwhile, other social scientists--e.g., 
psychometricians and statistical sociologists--have focused their attention on errors-
in-variables models in the form of true score theory and factor analysis" (Geraci, 
1977; p. 163). Presumably, "other social scientists," particularly psychometricians, 
have not focused much attention on stochastic disturbances. Also, researchers in 
time series analysis have typically recommended a large number of data points, 
often cited as at least 50, to use ARMA models. Unfortunately, the distinction 
between requiring such numbers for forecasting and complex model identification 
and requiring only a few time points for simple AR, MA, or ARMA models has not 
been forcefully pointed out.  

Just as it is legitimate to use SEM to observe whether stochastic simplex models (or 
their more restricted autoregressive form) fit longitudinal panel data, it is equally 
plausible to observe whether stochastic MA or ARMA models fit as well, especially 
when measurement errors covary. Moreover, this approach requires that the 
researcher theoretically decide, a priori, what relationships are substantively 
tenable. Models must be specified at some hypothesized lag according to what is 
theoretically plausible, or lag correlation structure can be examined. Because time 
series analysis has been generally used with single -subject designs, longitudinal 
panel data have both some advantages and some limitations with time series 
methods.  

Longitudinal Panel Data and Time Series Models 

With single-subject designs, the autocorrelation structure is estimated from the 
observed number of time points. Because this is a straightforward power function, 
methodologists suggest a minimum number of time points, such as 50, to support 
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reasonable standard errors. For panel data, the individual subjects may be thought 
to be replications. Cross-time covariances will then be more stable than covariances 
for single subjects, and far fewer time points will be needed to estimate lagged 
relationships. Of course, this requires assuming identical time series processes for 
all individuals or reasonably similar processes that can be aggregated meaningfully 
into a single representation. It is an empirical question whether an identified process 
reasonably represents all, most, some, or none of the subjects comprising the 
panels. It is also an empirical question whether it is important to require similarity of 
process for the group and the individual. If the same process is observed across 
groups and across time, the estimation of parameters is appropriately made, 
regardless of the processes found in individuals. The substantive issue of why the 
processes differ will be a different investigation.  

With longitudinal panel data, it seems reasonable that a minimum of four time points 
are needed to specify either an AR Lag 1 or an MA Lag 1 process. Although more 
complex processes may be at play, potentially affecting estimation and statistical 
tests, the limitation is in the generalizability of the data, not in the estimation and 
testing within the sample itself. Models more complex than those we have been able 
to measure and estimate are always possible. For as few as five or six time points, 
more complex error-covariance structures such as AR Lag 2 or ARMA (2,2) are 
possible and are likely to exhaust most commonly found models (Glass et al., 
1975).  

Unlike general simplex models, the time series formulations restrict the adjacent 
covariances (for Lag 1) to the same values. Such parsimony is relevant to 
examining error-covariance structure, because such a restriction can free a 
significant number of degrees of freedom.  

Marsh (1993) was correct when he said that researchers who analyze longitudinal 
data should not rely solely on the simplex or quasi-simplex model; however, 
stochastic models other than the conventionally used simplex and quasi-simplex 
models should also be tested against longitudinal data sets, particularly when the 
estimation of measurement-error covariances is substantively relevant. In this case, 
second-order models are unnecessary because measurement-error covariances 
are expected only at some lag, and so the time series models specified to have 
measurement-error covariances are sufficiently parsimonious to be estimated.  

Conclusion 

The weight of Marsh and Hau's (1996) argument rests on their proposed 
counterexample. This counterexample was not one of many possible 
counterexamples, but represents a stumbling block evident in some of Marsh's 
previously published research (e.g., Marsh, 1993; Marsh & Grayson, 1994a, 1994b). 
It is a stumbling block because Marsh (1993) was compelled to specify 
measurement-error correlations in his quasi-simplex or one-factor models (or else 
risk biased stability estimates), though he had no theoretical justification for this 
mechanistic practice. Consequently, Marsh and Hau (1996) were apparently forced 
to argue both that parsimony should not always be a standard and that the a priori 
assumption of correlated measurement errors should be made when longitudinal 
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data are studied, despite their potential irrelevance to the particular theory 
advanced. However, Sivo (1997) found that not all the widely used exemplar 
longitudinal data sets have correlated errors, so such an a priori claim is 
presumptuous. Moreover, Sivo found that whenever simplex or quasi-simplex 
models are tested, both MA and ARMA models must also be tested before one 
decides which process is present in a given data set because, on gross observation, 
one stochastic model may appear to capture the error process in a data set when, in 
reality, another process is present.  

Even if all error covariances were found to be high (suggesting no stochastic 
process), a more orthodox and tenable approach to the data would be to determine 
first whether some unmodeled variable, such as practice effects, is present in the 
data. In this case, the correct approach would be to identify and consequently model 
the variable explicitly, rather than simply freeing all measurement-error covariances. 

In summation, exchanging the mechanistic decision rules that penalize model 
complexity with the mechanistic decision rule calling for the unwarranted 
specification of all measurement-error covariances does not resolve the issue of 
how model evaluation should be effectively conducted. Certainly, parsimony has not 
been dismissed based on the argument Marsh and Hau (1996) presented for 
longitudinal data.  
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